视觉SLAM十四讲——ch10实践(后端2)

视觉SLAM十四讲——ch10的实践操作及避坑

  • 0. 实践前小知识介绍
  • 1. 实践操作前的准备工作
  • 2. 实践过程
    • 2.1 g2o原生位姿图
    • 2.2 李代数上的位姿图优化
  • 3. 遇到的问题及解决办法
    • 3.1 在运行pose_graph_g2o_lie时出现错误

0. 实践前小知识介绍

视觉SLAM(Simultaneous Localization and Mapping)后端是一种用于处理视觉SLAM问题的算法。视觉SLAM是指机器在未知环境中同时实现自身的定位和地图构建的技术。

视觉SLAM后端的任务是在视觉SLAM中负责维护一个优化后的地图和机器人的轨迹。常见的视觉SLAM后端算法包括基于图优化的方法,如G2O、ceres等,以及基于滤波器的方法,如卡尔曼滤波器、扩展卡尔曼滤波器等。

视觉SLAM后端算法需要处理传感器数据的噪声和不确定性,并通过优化算法来减小误差和提高精度。同时,视觉SLAM后端算法还需要快速、高效地处理大量的数据,并对计算结果进行实时更新和优化。

视觉SLAM后端算法在自主驾驶、无人机、机器人等领域有广泛的应用。

1. 实践操作前的准备工作

  1. 在终端中进入ch10文件夹下,顺序执行以下命令进行编译。
mkdir build
cd build
cmake ..
//注意,j8还是其他主要看自己的电脑情况
make -j8
  1. 在build文件中进行运行。
    注意: 在make过程中,会出现warning,但是对我们此实践的过程几乎没有影响。

2. 实践过程

2.1 g2o原生位姿图

在build中执行语句:

 ./pose_graph_g2o_SE3 /home/fighter/slam/slambook2/ch10/sphere.g2o

运行结果:
生成文件result.g2o;终端输出:

read total 2500 vertices, 9799 edges.
optimizing ...
iteration= 0     chi2= 1023011093.967641         time= 0.616354  cumTime= 0.616354       edges= 9799     schur= 0        lambda= 805.622433      levenbergIter= 1
iteration= 1     chi2= 385118688.233187  time= 0.363139  cumTime= 0.979494       edges= 9799     schur= 0        lambda= 537.081622      levenbergIter= 1
iteration= 2     chi2= 166223726.693657  time= 0.350041  cumTime= 1.32953        edges= 9799     schur= 0        lambda= 358.054415      levenbergIter= 1
iteration= 3     chi2= 86610874.269316   time= 0.351792  cumTime= 1.68133        edges= 9799     schur= 0        lambda= 238.702943      levenbergIter= 1
iteration= 4     chi2= 40582782.710190   time= 0.388134  cumTime= 2.06946        edges= 9799     schur= 0        lambda= 159.135295      levenbergIter= 1
iteration= 5     chi2= 15055383.753041   time= 0.377086  cumTime= 2.44655        edges= 9799     schur= 0        lambda= 101.425210      levenbergIter= 1
iteration= 6     chi2= 6715193.487655    time= 0.363641  cumTime= 2.81019        edges= 9799     schur= 0        lambda= 37.664667       levenbergIter= 1
iteration= 7     chi2= 2171949.168382    time= 0.383848  cumTime= 3.19404        edges= 9799     schur= 0        lambda= 12.554889       levenbergIter= 1
iteration= 8     chi2= 740566.827049     time= 0.376922  cumTime= 3.57096        edges= 9799     schur= 0        lambda= 4.184963        levenbergIter= 1
iteration= 9     chi2= 313641.802464     time= 0.367001  cumTime= 3.93796        edges= 9799     schur= 0        lambda= 2.583432        levenbergIter= 1
iteration= 10    chi2= 82659.743578      time= 0.356125  cumTime= 4.29408        edges= 9799     schur= 0        lambda= 0.861144        levenbergIter= 1
iteration= 11    chi2= 58220.369189      time= 0.326571  cumTime= 4.62065        edges= 9799     schur= 0        lambda= 0.287048        levenbergIter= 1
iteration= 12    chi2= 52214.188561      time= 0.34423   cumTime= 4.96488        edges= 9799     schur= 0        lambda= 0.095683        levenbergIter= 1
iteration= 13    chi2= 50948.580336      time= 0.344858  cumTime= 5.30974        edges= 9799     schur= 0        lambda= 0.031894        levenbergIter= 1
iteration= 14    chi2= 50587.776729      time= 0.323255  cumTime= 5.633  edges= 9799     schur= 0        lambda= 0.016436        levenbergIter= 1
iteration= 15    chi2= 50233.038802      time= 0.321105  cumTime= 5.9541         edges= 9799     schur= 0        lambda= 0.010957        levenbergIter= 1
iteration= 16    chi2= 49995.082839      time= 0.321401  cumTime= 6.2755         edges= 9799     schur= 0        lambda= 0.007305        levenbergIter= 1
iteration= 17    chi2= 48876.738967      time= 0.702032  cumTime= 6.97753        edges= 9799     schur= 0        lambda= 0.009298        levenbergIter= 2
iteration= 18    chi2= 48806.625522      time= 0.373531  cumTime= 7.35107        edges= 9799     schur= 0        lambda= 0.006199        levenbergIter= 1
iteration= 19    chi2= 47790.891373      time= 0.764476  cumTime= 8.11554        edges= 9799     schur= 0        lambda= 0.008265        levenbergIter= 2
iteration= 20    chi2= 47713.626582      time= 0.344026  cumTime= 8.45957        edges= 9799     schur= 0        lambda= 0.005510        levenbergIter= 1
iteration= 21    chi2= 46869.323689      time= 0.698816  cumTime= 9.15838        edges= 9799     schur= 0        lambda= 0.007347        levenbergIter= 2
iteration= 22    chi2= 46802.585509      time= 0.359225  cumTime= 9.51761        edges= 9799     schur= 0        lambda= 0.004898        levenbergIter= 1
iteration= 23    chi2= 46128.758041      time= 0.631884  cumTime= 10.1495        edges= 9799     schur= 0        lambda= 0.006489        levenbergIter= 2
iteration= 24    chi2= 46069.133541      time= 0.309911  cumTime= 10.4594        edges= 9799     schur= 0        lambda= 0.004326        levenbergIter= 1
iteration= 25    chi2= 45553.862164      time= 0.622007  cumTime= 11.0814        edges= 9799     schur= 0        lambda= 0.005595        levenbergIter= 2
iteration= 26    chi2= 45511.762616      time= 0.311606  cumTime= 11.393         edges= 9799     schur= 0        lambda= 0.003730        levenbergIter= 1
iteration= 27    chi2= 45122.762999      time= 0.61714   cumTime= 12.0102        edges= 9799     schur= 0        lambda= 0.004690        levenbergIter= 2
iteration= 28    chi2= 45095.174397      time= 0.31117   cumTime= 12.3213        edges= 9799     schur= 0        lambda= 0.003127        levenbergIter= 1
iteration= 29    chi2= 44811.248505      time= 0.608863  cumTime= 12.9302        edges= 9799     schur= 0        lambda= 0.003785        levenbergIter= 2
saving optimization results ...

实践中使用的时列文伯格—马夸尔特下降的方式,迭代次数选择的三十次。
打开文件result.g2o:
在终端运行:

g2o_viewer result.g2o

运行图为(使用g2o自带的顶点与边求解的结果):
使用g2o自带的顶点与边求解的结果

2.2 李代数上的位姿图优化

在build中执行语句:

 ./pose_graph_g2o_lie /home/fighter/slam/slambook2/ch10/sphere.g2o

运行结果:
生成文件result_lie.g2o;终端输出:

read total 2500 vertices, 9799 edges.
optimizing ...
iteration= 0     chi2= 674837160.579968  time= 0.419014  cumTime= 0.419014       edges= 9799     schur= 0        lambda= 6658.554263     levenbergIter= 1
iteration= 1     chi2= 234706314.970484  time= 0.307203  cumTime= 0.726217       edges= 9799     schur= 0        lambda= 2219.518088     levenbergIter= 1
iteration= 2     chi2= 142146174.348537  time= 0.306181  cumTime= 1.0324         edges= 9799     schur= 0        lambda= 739.839363      levenbergIter= 1
iteration= 3     chi2= 83834595.145595   time= 0.309102  cumTime= 1.3415         edges= 9799     schur= 0        lambda= 246.613121      levenbergIter= 1
iteration= 4     chi2= 41878079.903257   time= 0.314584  cumTime= 1.65608        edges= 9799     schur= 0        lambda= 82.204374       levenbergIter= 1
iteration= 5     chi2= 16598628.119947   time= 0.306542  cumTime= 1.96263        edges= 9799     schur= 0        lambda= 27.401458       levenbergIter= 1
iteration= 6     chi2= 6137666.739406    time= 0.306009  cumTime= 2.26864        edges= 9799     schur= 0        lambda= 9.133819        levenbergIter= 1
iteration= 7     chi2= 2182986.250589    time= 0.313833  cumTime= 2.58247        edges= 9799     schur= 0        lambda= 3.044606        levenbergIter= 1
iteration= 8     chi2= 732676.668220     time= 0.304348  cumTime= 2.88682        edges= 9799     schur= 0        lambda= 1.014869        levenbergIter= 1
iteration= 9     chi2= 284457.115176     time= 0.305686  cumTime= 3.1925         edges= 9799     schur= 0        lambda= 0.338290        levenbergIter= 1
iteration= 10    chi2= 170796.109734     time= 0.317388  cumTime= 3.50989        edges= 9799     schur= 0        lambda= 0.181974        levenbergIter= 1
iteration= 11    chi2= 145466.315841     time= 0.305792  cumTime= 3.81568        edges= 9799     schur= 0        lambda= 0.060658        levenbergIter= 1
iteration= 12    chi2= 142373.179501     time= 0.347022  cumTime= 4.16271        edges= 9799     schur= 0        lambda= 0.020219        levenbergIter= 1
iteration= 13    chi2= 137485.756901     time= 0.304775  cumTime= 4.46748        edges= 9799     schur= 0        lambda= 0.006740        levenbergIter= 1
iteration= 14    chi2= 131202.175665     time= 0.311505  cumTime= 4.77899        edges= 9799     schur= 0        lambda= 0.002247        levenbergIter= 1
iteration= 15    chi2= 128006.202529     time= 0.30704   cumTime= 5.08603        edges= 9799     schur= 0        lambda= 0.000749        levenbergIter= 1
iteration= 16    chi2= 127587.860945     time= 0.313496  cumTime= 5.39952        edges= 9799     schur= 0        lambda= 0.000250        levenbergIter= 1
iteration= 17    chi2= 127578.599359     time= 0.322269  cumTime= 5.72179        edges= 9799     schur= 0        lambda= 0.000083        levenbergIter= 1
iteration= 18    chi2= 127578.573853     time= 0.326536  cumTime= 6.04833        edges= 9799     schur= 0        lambda= 0.000028        levenbergIter= 1
iteration= 19    chi2= 127578.573840     time= 0.328882  cumTime= 6.37721        edges= 9799     schur= 0        lambda= 0.000018        levenbergIter= 1
iteration= 20    chi2= 127578.573840     time= 0.315369  cumTime= 6.69258        edges= 9799     schur= 0        lambda= 0.000012        levenbergIter= 1
iteration= 21    chi2= 127578.573840     time= 0.308945  cumTime= 7.00152        edges= 9799     schur= 0        lambda= 0.000008        levenbergIter= 1
iteration= 22    chi2= 127578.573840     time= 3.00403   cumTime= 10.0056        edges= 9799     schur= 0        lambda= 296083660142.312988    levenbergIter= 10
saving optimization results ...

可以发现,迭代23次后,总体误差保持不变,事实上可以让优化算法停止。
打开文件result_lie.g2o:
在终端运行:

g2o_viewer result_lie.g2o

运行图为(使用李代数自定义节点与优化后的结果):
运行图

单击窗口中的Optimize按钮,g2o将使用它自带的SE3顶点进行优化,可以在窗口下方的文本框看到以下内容:

loaded result_lie.g2o with 2500 vertices and 9799 measurements
graph is fixed by node 2499
# Using CHOLMOD poseDim -1 landMarkDim -1 blockordering 1
Preparing (no marginalization of Landmarks)
iteration= 0	 chi2= 44360.504602	 time= 1.01586	 cumTime= 1.01586	 edges= 9799	 schur= 0
iteration= 1	 chi2= 44360.466873	 time= 0.247692	 cumTime= 1.26355	 edges= 9799	 schur= 0
iteration= 2	 chi2= 44360.466872	 time= 0.253022	 cumTime= 1.51658	 edges= 9799	 schur= 0
iteration= 3	 chi2= 44360.466872	 time= 0.247728	 cumTime= 1.7643	 edges= 9799	 schur= 0
iteration= 4	 chi2= 44360.466872	 time= 0.272316	 cumTime= 2.03662	 edges= 9799	 schur= 0
iteration= 5	 chi2= 44360.466872	 time= 0.249167	 cumTime= 2.28579	 edges= 9799	 schur= 0
iteration= 6	 chi2= 44360.466872	 time= 0.248997	 cumTime= 2.53478	 edges= 9799	 schur= 0
iteration= 7	 chi2= 44360.466872	 time= 0.28726	 cumTime= 2.82204	 edges= 9799	 schur= 0
iteration= 8	 chi2= 44360.466872	 time= 0.243892	 cumTime= 3.06594	 edges= 9799	 schur= 0
iteration= 9	 chi2= 44360.466872	 time= 0.245539	 cumTime= 3.31148	 edges= 9799	 schur= 0

3. 遇到的问题及解决办法

3.1 在运行pose_graph_g2o_lie时出现错误

  1. 出现的错误如下所示:
Sophus ensure failed in function 'void Sophus::SO3Base<Derived>::normalize() [with Derived = Sophus::SO3<double>]', file '/usr/local/include/sophus/so3.hpp', line 273.
Quaternion (   0.706662 4.32706e-17    0.707551 -4.3325e-17) should not be close to zero!
Aborted

原因:

顶点类VertexSE3LieAlgebra的读入函数virtual bool read(istream& is)缺少返回值,会报以上错误。

解决办法:

在函数 virtual bool read(istream& is) 中加入 return true;文章来源地址https://uudwc.com/A/3NbD

原文地址:https://blog.csdn.net/qq_44164791/article/details/131233670

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请联系站长进行投诉反馈,一经查实,立即删除!

h
上一篇 2023年06月17日 10:39
实际项目中使用gorm-gen来生成实体类
下一篇 2023年06月17日 10:40