Redis缓存更新策略、详解并发条件下数据库与缓存的一致性问题以及消息队列解决方案

0、前言

        我们知道,缓存由于在内存中,数据处理速度比直接操作数据库要快很多,因此常常将数据先读到缓存中,再进行查询、更新等操作。
        但与之而来的问题就是,内存中的数据不仅没有持久化,而且需要保证redis和数据库中数据的一致性,针对这个问题,redis如何保证这样的一致性有以下几种策略。

1、Write Back(写回)策略

        实际开发中最不常用的策略,它仅针对非敏感数据、一致性要求不强的数据,才有可能采用。实际开发不采用。

        Write Back(写回)策略先把数据读入redis,在更新数据的时候,只更新缓存,同时将缓存数据设置为脏的,然后立马返回,并不会更新数据库。对于数据库的更新,会通过批量异步更新的方式进行,例如设置定时任务进行更新。

        例如,对于博客浏览量这样的数据,我们采用写回策略,即使多个用户并发访问,我们每次只要把缓存中的浏览量更新即可,这种 写回策略 非常适合发生大量写操作的场景。

        也就是说,读写都在redis中进行,然后异步地更新回数据库来保持一致性、持久化。

        明显的缺点:带来的问题是,数据不是强一致性的,而且会有数据丢失的风险。因为缓存一般使用内存,而内存是非持久化的,所以一旦缓存机器掉电,就会造成原本缓存中的脏数据丢失。

2、Read/Write Through(读穿 / 写穿)策略

 (1)Read Through 策略

        先查询缓存中数据是否存在,如果存在则直接返回,如果不存在,则由缓存组件负责从数据库查询数据,并将结果写入到缓存组件,最后缓存组件将数据返回给应用。

(2)Write Through 策略

当有数据更新的时候,先查询要写入的数据在缓存中是否已经存在:

  • 如果缓存中数据已经存在,则更新缓存中的数据,并且由缓存组件同步更新到数据库中,然后缓存组件告知应用程序更新完成。
  • 如果缓存中数据不存在,直接更新数据库,然后返回;

 3、Cache Aside 旁路缓存 策略(实际开发常用)

        实际开发中,前两种策略都用不了,而采用旁路缓存策略,只不过有一些难度和注意点。

先说正确结论:

写策略的步骤:

  • 先更新数据库中的数据,再删除缓存中的数据。

读策略的步骤:

  • 如果读取的数据命中了缓存,则直接返回数据;
  • 如果读取的数据没有命中缓存,则从数据库中读取数据,然后将数据写入到缓存,并且返回给用户。

  (1)数据库和缓存都要更新?

        如果叛逆一点,更新数据库,更新缓存,会带来怎样的并发问题呢?
        借用小林coding的时序图如下:
        假设请求A、B同时对数据更新,顺序如下,在并发情况下,有可能先更新的请求A还没有更新完的时候,请求B就把缓存都更新完事了,然后A再更新缓存。
        可见,这样会造成数据库为2、缓存为1,也就是不一致状况。而如果先更新缓存再更新数据库也是同理的,仍然有数据不一致问题

         

(2)改进:只更新数据库,不更新缓存了,直接把缓存中的数据删了

        反正就算redis里没数据,查询时也会从数据库里查出来放在redis里,那我直接不更新了!把数据删了,到时候再读不就好了!这就是Cache Aside 策略。

        但有1个问题:更新数据库 删除缓存 这两个步骤的顺序该如何呢?

         <1> 假设我们先删除缓存,引用小林的图片:线程A先删除缓存再更新数据库为“21”,但由于更新写入数据库的速度是慢很多的,很可能中间出现了请求B在做查询,从而读取到还未更新的值“20”,并把缓存更细。从而导致不一致问题,这是不允许的。

          <2> 这次改邪归正,我们先更新数据库,再删除缓存:有人会觉得请求A如果去查询数据时,如果缓存未命中,在把数据写回redis的过程中,线程B过来先更新再删除,那就会导致如下的不一致情况了吗?!
        但实际上这样的情况很少,根本原因在于update数据库的速度 比 update缓存的速度 要慢得多。

        也就是说,黄色线条中间,更新缓存的时间间隔是很短的,而更新数据库的时间相对要慢得多,因此这种并发问题很罕见,还是能保证一致性的。

(3)再改进:如果“删除缓存”这个步骤失败了怎么办?

        为了确保万无一失,我们可以给缓存数据加了过期时间,就算在这期间存在缓存数据不一致,但过期时间到了会自动清除redis的key,这样也能避免删除失败的问题,达到最终一致。
        但问题在于,如果删除失败需要等待过期时间,数据的时效性、一致性就不强了,有可能明明更新了数据,查询显示出来却要过一段时间才生效,这对敏感业务来说是有影响的!

        解决方案使用消息队列实现异步处理

        在消费者线程中,尝试删除缓存。
        如果删除失败,则根据任务是否在消息队列中进行判断,若在队列中,则继续重试;否则报错。
        如果删除成功,才将任务从消息队列中移除。示例代码如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.exceptions.JedisException;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

public class CacheManager {
    private Jedis redisClient;
    private BlockingQueue<String> messageQueue;

    public CacheManager() {
        // 初始化Redis连接和消息队列
        redisClient = new Jedis("localhost");
        messageQueue = new LinkedBlockingQueue<>();

        // 创建并启动消费者线程
        Thread consumerThread = new Thread(new Consumer());
        consumerThread.start();
    }

    public void deleteCache(String key) {
        // 将任务添加到消息队列中
        String task = key;
        try {
            messageQueue.put(task);
            System.out.println("Added cache delete task for key: " + key);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private class Consumer implements Runnable {
        @Override
        public void run() {
            while (true) {
                try {
                    String task = messageQueue.take();

                    // 尝试删除缓存
                    try {
                        // 删除缓存的操作,此处为示例代码,根据实际情况进行修改
                        redisClient.del(task);
                        System.out.println("Deleted cache for key: " + task);

                    } catch (JedisException e) {
                        // 删除失败,重试或报错
                        if (messageQueue.contains(task)) {
                            // 仍在队列中,继续重试
                            System.out.println("Failed to delete cache for key: " + task + ", retrying...");
                            messageQueue.put(task);
                        } else {
                            // 不在队列中,报错
                            System.out.println("Failed to delete cache for key: " + task + ", max retries exceeded. Reporting error...");
                        }
                    }

                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    public static void main(String[] args) {
        CacheManager cacheManager = new CacheManager();

        // 示例使用
        cacheManager.deleteCache("user:1");
        cacheManager.deleteCache("user:2");
    }
}

4、小结

        本文通过介绍多种缓存更新策略,以及深入理解了实际开发中常用的旁路缓存策略所遇到的问题,并通过消息队列进行改进,实现了缓存与数据库的一致性。文章来源地址https://uudwc.com/A/8d6Ov

原文地址:https://blog.csdn.net/weixin_44440311/article/details/132801217

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请联系站长进行投诉反馈,一经查实,立即删除!

上一篇 2023年09月12日 06:46
C++解析XML文件(TinyXML)
下一篇 2023年09月12日 06:46