目录
- 一、环境准备
- 1.进入ModelArts官网
- 2.使用CodeLab体验Notebook实例
- 二、案例实现
- 2.1 环境准备与数据读取
- 2.2 数据集创建
- 2.3 模型构建
- 2.4 自定义评估指标
- 2.5 模型训练及评估
- 2.6 模型预测
- 2.7 可视化预测结果
Unet模型于2015年在论文《U-Net: Convolutional Networks for Biomedical Image
Segmentation》中被提出,最初的提出是为了解决医学图像分割问题,用于细胞层面的图像分割任务。Unet模型是在FCN网络的基础上构建的,但由于FCN无法获取上下文信息以及位置信息,导致准确性较低,Unet模型由此引入了U型结构获取上述两种信息,并且模型结构简单高效、容易构建,在较小的数据集上也能实现较高的准确率。
整个模型结构就是在原始图像输入后,首先进行特征提取,再进行特征融合:a)
左半部分负责特征提取的网络结构(即编码器结构)需要利用两个3x3的卷积核与2x2的池化层组成一个“下采样模块”,每一个下采样模块首先会对特征图进行两次valid卷积,再进行一次池化操作。由此经过4个下采样模块后,原始尺寸为572x572大小、通道数为1的原始图像,转换为了大小为28x28、通道数为1024的特征图。b)
右半部分负责进行上采样的网络结构(即解码器结构)需要利用1次反卷积操作、特征拼接操作以及两个3x3的卷积核作为一个“上采样模块”,每一个上采样模块首先会对特征图通过反卷积操作使图像尺寸增加1倍,再通过拼接编码器结构中的特征图使得通道数增加,最后经过两次valid卷积。由此经过4个上采样模块后,经过下采样模块的、大小为28x28、通道数为1024的特征图,转换为了大小为388x388、通道数为64的特征图。c) 网络结构的最后一部分是通过两个1x1的卷积核将经过上采样得到的通道数为64的特征图,转换为了通道数为2的图像作为预测结果输出。
模型特点a) 利用拼接操作将低级特征图与高级特征图进行特征融合
b) 完全对称的U型结构使得高分辨率信息和低分辨率信息在目标图片中增加,前后特征融合更为彻底。
c)
结合了下采样时的低分辨率信息(提供物体类别识别依据)和上采样时的高分辨率信息(提供精准分割定位依据),此外还通过融合操作填补底层信息以提高分割精度。
如果你对MindSpore感兴趣,可以关注昇思MindSpore社区
一、环境准备
1.进入ModelArts官网
云平台帮助用户快速创建和部署模型,管理全周期AI工作流,选择下面的云平台以开始使用昇思MindSpore,获取安装命令,安装MindSpore2.0.0-alpha版本,可以在昇思教程中进入ModelArts官网
选择下方CodeLab立即体验
等待环境搭建完成
2.使用CodeLab体验Notebook实例
下载NoteBook样例代码,基于MindSpore框架的UNet-2D案例实现 ,.ipynb
为样例代码
打开一个terminal,将项目clone下来
git clone https://github.com/mindspore-courses/applications.git
找到U-Net.ipynb
选择Kernel环境
切换至GPU环境,切换成第一个限时免费
进入昇思MindSpore官网,点击上方的安装
获取安装命令
回到Notebook中,在第一块代码前加入命令
conda update -n base -c defaults conda
安装MindSpore 2.0 GPU版本
conda install mindspore=2.0.0a0 -c mindspore -c conda-forge
安装mindvision
pip install mindvision
安装下载download
pip install download
二、案例实现
2.1 环境准备与数据读取
本案例基于MindSpore-CPU版本实现,在CPU上完成模型训练。
案例实现所使用的数据即ISBI果蝇电镜图数据集,可以从http://brainiac2.mit.edu/isbi_challenge/ 中下载,下载好的数据集包括3个tif文件,分别对应测试集样本、训练集标签、训练集样本,文件路径结构如下:
.datasets/
└── ISBI
├── test-volume.tif
├── train-labels.tif
└── train-volume.tif
其中每个tif文件都由30副图片压缩而成,所以接下来需要获取每个tif文件中所存储的所有图片,将其转换为png格式存储,得到训练集样本对应的30张png图片、训练集标签对应的30张png图片以及测试集样本对应的30张png图片。
import sys
import mindspore
print(sys.executable)
print(mindspore.run_check())
from PIL import Image, ImageSequence
import math
import numpy as np
import matplotlib.pyplot as plt
#显示下载好的数据
train_image_path = "data/train-volume.tif"
train_masks_path = "data/train-labels.tif"
image = np.array([np.array(p) for p in ImageSequence.Iterator(Image.open(train_image_path))])
masks = np.array([np.array(p) for p in ImageSequence.Iterator(Image.open(train_masks_path))])
def show_image(image_list,num = 6):
img_titles = []
img_draws = []
for ind,img in enumerate(image_list):
if ind == num:
break
img_titles.append(ind)
img_draws.append(img)
for i in range(len(img_titles)):
if len(img_titles) > 6:
row = 3
elif 3<len(img_titles)<=6:
row = 2
else:
row = 1
col = math.ceil(len(img_titles)/row)
plt.subplot(row,col,i+1),plt.imshow(img_draws[i],'gray')
plt.title(img_titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
show_image(image,num = 12)
show_image(masks,num = 12)
具体的实现方式首先是将tif文件转换为数组形式,之后通过io操作将每张图片对应的数组存储为png图像,处理过后的训练集样本及其对应的标签图像如图2所示。将3个tif文件转换为png格式后,针对训练集的样本与标签,将其以2:1的比例,重新划分为了训练集与验证集,划分完成后的文件路径结构如下:
.datasets/
└── ISBI
├── test_imgs
│ ├── 00000.png
│ ├── 00001.png
│ └── . . . . .
├── train
│ ├── image
│ │ ├── 00001.png
│ │ ├── 00002.png
│ │ └── . . . . .
│ └── mask
│ ├── 00001.png
│ ├── 00002.png
│ └── . . . . .
└── val
├── image
│ ├── 00000.png
│ ├── 00003.png
│ └── . . . . .
└── mask
├── 00000.png
├── 00003.png
└── . . . . .
转换代码如下,请注意,此示例代码仅将第一帧转换为png格式。如果需要转换所有帧,请使用循环并在每次迭代中调用img.seek(i)。
from PIL import Image
import os
# 创建输出目录
output_dir = './datasets/ISBI'
os.makedirs(os.path.join(output_dir, 'train', 'image'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'train', 'mask'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'val', 'image'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'val', 'mask'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'test_imgs'), exist_ok=True)
# 将train-volume.tif转换为png格式并保存到train/image目录下
with Image.open('./data/train-volume.tif') as img:
img.save(os.path.join(output_dir, 'train', 'image', '00001.png'))
# 将train-labels.tif转换为png格式并保存到train/mask目录下
with Image.open('./data/train-labels.tif') as img:
img.save(os.path.join(output_dir, 'train', 'mask', '00001.png'))
# 将test-volume.tif转换为png格式并保存到test_imgs目录下
with Image.open('./data/test-volume.tif') as img:
for i in range(img.n_frames):
img.seek(i)
img.save(os.path.join(output_dir, 'test_imgs', '{:05d}.png'.format(i)))
# 将train-volume.tif和train-labels.tif分别划分为训练集和验证集,并保存到对应目录下
with Image.open('./data/train-volume.tif') as img1, Image.open('./data/train-labels.tif') as img2:
for i in range(img1.n_frames):
img1.seek(i)
img2.seek(i)
if i % 3 == 0:
img1.save(os.path.join(output_dir, 'val', 'image', '{:05d}.png'.format(i // 3)))
img2.save(os.path.join(output_dir, 'val', 'mask', '{:05d}.png'.format(i // 3)))
else:
img1.save(os.path.join(output_dir, 'train', 'image', '{:05d}.png'.format(i // 3 + 1)))
img2.save(os.path.join(output_dir, 'train', 'mask', '{:05d}.png'.format(i // 3 + 1)))
2.2 数据集创建
在进行上述tif文件格式转换,以及测试集和验证集的进一步划分后,就完成了数据读取所需的所有工作,接下来就需要利用处理好的图像数据,通过一定的图像变换来进行数据增强,并完成数据集的创建。
import os
import cv2
import mindspore.dataset as ds
import glob
import mindspore.dataset.vision as vision_C #.c_transforms
import mindspore.dataset.transforms as C_transforms #.c_transform
import random
import mindspore
from mindspore.dataset.vision import Inter
def train_transforms(img_size):
return [
vision_C.Resize(img_size, interpolation=Inter.NEAREST),
vision_C.Rescale(1./255., 0.0),
vision_C.RandomHorizontalFlip(prob=0.5),
vision_C.RandomVerticalFlip(prob=0.5),
vision_C.HWC2CHW()
]
def val_transforms(img_size):
return [
vision_C.Resize(img_size, interpolation=Inter.NEAREST),
vision_C.Rescale(1/255., 0),
vision_C.HWC2CHW()
]
class Data_Loader:
def __init__(self, data_path):
# 初始化函数,读取所有data_path下的图片
self.data_path = data_path
self.imgs_path = glob.glob(os.path.join(data_path, 'image/*.png'))
self.label_path = glob.glob(os.path.join(data_path, 'mask/*.png'))
def __getitem__(self, index):
# 根据index读取图片
image = cv2.imread(self.imgs_path[index])
label = cv2.imread(self.label_path[index], cv2.IMREAD_GRAYSCALE)
label = label.reshape((label.shape[0], label.shape[1], 1))
return image, label
@property
def column_names(self):
column_names = ['image', 'label']
return column_names
def __len__(self):
# 返回训练集大小
return len(self.imgs_path)
def create_dataset(data_dir, img_size, batch_size, augment, shuffle):
mc_dataset = Data_Loader(data_path=data_dir)
dataset = ds.GeneratorDataset(mc_dataset, mc_dataset.column_names, shuffle=shuffle)
if augment:
transform_img = train_transforms(img_size)
else:
transform_img = val_transforms(img_size)
seed = random.randint(1,1000)
mindspore.set_seed(seed)
dataset = dataset.map(input_columns='image', num_parallel_workers=1, operations=transform_img)
mindspore.set_seed(seed)
dataset = dataset.map(input_columns="label", num_parallel_workers=1, operations=transform_img)
if shuffle:
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(batch_size, num_parallel_workers=1)
if augment == True and shuffle == True:
print("训练集数据量:", len(mc_dataset))
elif augment == False and shuffle == False:
print("验证集数据量:", len(mc_dataset))
else:
pass
return dataset
注意这里要修改datasets对应的路径
if __name__ == '__main__':
train_dataset = create_dataset('src/datasets/ISBI/val', img_size=224, batch_size=3, augment=False, shuffle=False)
for item, (image, label) in enumerate(train_dataset):
if item < 5:
print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}",'---',f"Shape of label [N, C, H, W]: {label.shape} {label.dtype}")
2.3 模型构建
本案例实现中所构建的Unet模型结构与2015年论文中提出的Unet结构大致相同,但本案例中Unet网络模型的“下采样模块”与“上采样模块”使用的卷积类型都为Same卷积,而原论文中使用的是Valid卷积。
from mindspore import nn
import mindspore.numpy as np
import mindspore.ops as ops
import mindspore.ops.operations as F
def double_conv(in_ch, out_ch):
return nn.SequentialCell(nn.Conv2d(in_ch, out_ch, 3),
nn.BatchNorm2d(out_ch), nn.ReLU(),
nn.Conv2d(out_ch, out_ch, 3),
nn.BatchNorm2d(out_ch), nn.ReLU())
class UNet(nn.Cell):
def __init__(self, in_ch = 3, n_classes = 1):
super(UNet, self).__init__()
self.concat1 = F.Concat(axis=1)
self.concat2 = F.Concat(axis=1)
self.concat3 = F.Concat(axis=1)
self.concat4 = F.Concat(axis=1)
self.double_conv1 = double_conv(in_ch, 64)
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.double_conv2 = double_conv(64, 128)
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.double_conv3 = double_conv(128, 256)
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.double_conv4 = double_conv(256, 512)
self.maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.double_conv5 = double_conv(512, 1024)
self.upsample1 = nn.ResizeBilinear()
self.double_conv6 = double_conv(1024 + 512, 512)
self.upsample2 = nn.ResizeBilinear()
self.double_conv7 = double_conv(512 + 256, 256)
self.upsample3 = nn.ResizeBilinear()
self.double_conv8 = double_conv(256 + 128, 128)
self.upsample4 = nn.ResizeBilinear()
self.double_conv9 = double_conv(128 + 64, 64)
self.final = nn.Conv2d(64, n_classes, 1)
self.sigmoid = ops.Sigmoid()
def construct(self, x):
feature1 = self.double_conv1(x)
tmp = self.maxpool1(feature1)
feature2 = self.double_conv2(tmp)
tmp = self.maxpool2(feature2)
feature3 = self.double_conv3(tmp)
tmp = self.maxpool3(feature3)
feature4 = self.double_conv4(tmp)
tmp = self.maxpool4(feature4)
feature5 = self.double_conv5(tmp)
up_feature1 = self.upsample1(feature5, scale_factor=2)
tmp = self.concat1((feature4, up_feature1))
tmp = self.double_conv6(tmp)
up_feature2 = self.upsample2(tmp, scale_factor=2)
tmp = self.concat2((feature3, up_feature2))
tmp = self.double_conv7(tmp)
up_feature3 = self.upsample3(tmp, scale_factor=2)
tmp = self.concat3((feature2, up_feature3))
tmp = self.double_conv8(tmp)
up_feature4 = self.upsample4(tmp, scale_factor=2)
tmp = self.concat4((feature1, up_feature4))
tmp = self.double_conv9(tmp)
output = self.sigmoid(self.final(tmp))
return output
2.4 自定义评估指标
为了能够更加全面和直观的观察网络模型训练效果,本案例实现中还使用了MindSpore框架来自定义Metrics,在自定义的metrics类中使用了多种评价函数来评估模型的好坏,分别为准确率Acc、交并比IoU、Dice系数、灵敏度Sens、特异性Spec。
import numpy as np
from mindspore._checkparam import Validator as validator
from mindspore.nn import Metric
from mindspore import Tensor
class metrics_(Metric):
def __init__(self, metrics, smooth=1e-5):
super(metrics_, self).__init__()
self.metrics = metrics
self.smooth = validator.check_positive_float(smooth, "smooth")
self.metrics_list = [0. for i in range(len(self.metrics))]
self._samples_num = 0
self.clear()
def Acc_metrics(self,y_pred, y):
tp = np.sum(y_pred.flatten() == y.flatten(), dtype=y_pred.dtype)
total = len(y_pred.flatten())
single_acc = float(tp) / float(total)
return single_acc
def IoU_metrics(self,y_pred, y):
intersection = np.sum(y_pred.flatten() * y.flatten())
unionset = np.sum(y_pred.flatten() + y.flatten()) - intersection
single_iou = float(intersection) / float(unionset + self.smooth)
return single_iou
def Dice_metrics(self,y_pred, y):
intersection = np.sum(y_pred.flatten() * y.flatten())
unionset = np.sum(y_pred.flatten()) + np.sum(y.flatten())
single_dice = 2*float(intersection) / float(unionset + self.smooth)
return single_dice
def Sens_metrics(self,y_pred, y):
tp = np.sum(y_pred.flatten() * y.flatten())
actual_positives = np.sum(y.flatten())
single_sens = float(tp) / float(actual_positives + self.smooth)
return single_sens
def Spec_metrics(self,y_pred, y):
true_neg = np.sum((1 - y.flatten()) * (1 - y_pred.flatten()))
total_neg = np.sum((1 - y.flatten()))
single_spec = float(true_neg) / float(total_neg + self.smooth)
return single_spec
def clear(self):
"""Clears the internal evaluation result."""
self.metrics_list = [0. for i in range(len(self.metrics))]
self._samples_num = 0
def update(self, *inputs):
if len(inputs) != 2:
raise ValueError("For 'update', it needs 2 inputs (predicted value, true value), ""but got {}.".format(len(inputs)))
y_pred = Tensor(inputs[0]).asnumpy() #modelarts,cpu
# y_pred = np.array(Tensor(inputs[0])) #cpu
y_pred[y_pred > 0.5] = float(1)
y_pred[y_pred <= 0.5] = float(0)
y = Tensor(inputs[1]).asnumpy() #modelarts,cpu
# y = np.array(Tensor(inputs[1])) #cpu
self._samples_num += y.shape[0]
if y_pred.shape != y.shape:
raise ValueError(f"For 'update', predicted value (input[0]) and true value (input[1]) "
f"should have same shape, but got predicted value shape: {y_pred.shape}, "
f"true value shape: {y.shape}.")
for i in range(y.shape[0]):
if "acc" in self.metrics:
single_acc = self.Acc_metrics(y_pred[i], y[i])
self.metrics_list[0] += single_acc
if "iou" in self.metrics:
single_iou = self.IoU_metrics(y_pred[i], y[i])
self.metrics_list[1] += single_iou
if "dice" in self.metrics:
single_dice = self.Dice_metrics(y_pred[i], y[i])
self.metrics_list[2] += single_dice
if "sens" in self.metrics:
single_sens = self.Sens_metrics(y_pred[i], y[i])
self.metrics_list[3] += single_sens
if "spec" in self.metrics:
single_spec = self.Spec_metrics(y_pred[i], y[i])
self.metrics_list[4] += single_spec
def eval(self):
if self._samples_num == 0:
raise RuntimeError("The 'metrics' can not be calculated, because the number of samples is 0, "
"please check whether your inputs(predicted value, true value) are empty, or has "
"called update method before calling eval method.")
for i in range(len(self.metrics_list)):
self.metrics_list[i] = self.metrics_list[i] / float(self._samples_num)
return self.metrics_list
x = Tensor(np.array([[[[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.8]]]]))
y = Tensor(np.array([[[[0, 1, 1], [1, 0, 0], [0, 1, 1]]]]))
metric = metrics_(["acc", "iou", "dice", "sens", "spec"],smooth=1e-5)
metric.clear()
metric.update(x, y)
res = metric.eval()
print( '丨acc: %.4f丨丨iou: %.4f丨丨dice: %.4f丨丨sens: %.4f丨丨spec: %.4f丨' % (res[0], res[1], res[2], res[3],res[4]), flush=True)
2.5 模型训练及评估
在模型训练时,首先是设置模型训练的epoch次数为50,再通过2.1节中自定义的create_dataset方法创建了训练集和验证集,其中训练集batch_size大小为4,验证集batch_size大小为2,图像尺寸统一调整为224x224;损失函数使用nn.BCELoss,优化器使用nn.Adam,并设置学习率为0.01。
注意这里要修改对应的路径
import mindspore.nn as nn
from mindspore import ops
import mindspore
from mindspore import ms_function
os.system("pip install ml_collections" )
import ml_collections
def get_config():
"""configuration """
config = ml_collections.ConfigDict()
config.epochs = 100
config.train_data_path = "src/datasets/ISBI/train/"
config.val_data_path = "src/datasets/ISBI/val/"
config.imgsize = 224
config.batch_size = 4
config.pretrained_path = None
config.in_channel = 3
config.n_classes = 1
config.lr = 0.0001
return config
cfg = get_config()
train_dataset = create_dataset(cfg.train_data_path, img_size=cfg.imgsize, batch_size= cfg.batch_size, augment=True, shuffle = True)
val_dataset = create_dataset(cfg.val_data_path, img_size=cfg.imgsize, batch_size= cfg.batch_size, augment=False, shuffle = False)
def train(model, dataset, loss_fn, optimizer, met):
# Define forward function
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
# Get gradient function
grad_fn = ops.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
# Define function of one-step training
@ms_function
def train_step(data, label):
(loss, logits), grads = grad_fn(data, label)
loss = ops.depend(loss, optimizer(grads))
return loss, logits
size = dataset.get_dataset_size()
model.set_train(True)
train_loss = 0
train_pred = []
train_label = []
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss, logits = train_step(data, label)
train_loss += loss.asnumpy()
train_pred.extend(logits.asnumpy())
train_label.extend(label.asnumpy())
train_loss /= size
metric = metrics_(met, smooth=1e-5)
metric.clear()
metric.update(train_pred, train_label)
res = metric.eval()
print(f'Train loss:{train_loss:>4f}','丨acc: %.3f丨丨iou: %.3f丨丨dice: %.3f丨丨sens: %.3f丨丨spec: %.3f丨' % (res[0], res[1], res[2], res[3], res[4]))
def val(model, dataset, loss_fn, met):
size = dataset.get_dataset_size()
model.set_train(False)
val_loss = 0
val_pred = []
val_label = []
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
pred = model(data)
val_loss += loss_fn(pred, label).asnumpy()
val_pred.extend(pred.asnumpy())
val_label.extend(label.asnumpy())
val_loss /= size
metric = metrics_(met, smooth=1e-5)
metric.clear()
metric.update(val_pred, val_label)
res = metric.eval()
print(f'Val loss:{val_loss:>4f}','丨acc: %.3f丨丨iou: %.3f丨丨dice: %.3f丨丨sens: %.3f丨丨spec: %.3f丨' % (res[0], res[1], res[2], res[3], res[4]))
checkpoint = res[1]
return checkpoint, res[4]
net = UNet(cfg.in_channel, cfg.n_classes)
criterion = nn.BCEWithLogitsLoss()
optimizer = nn.SGD(params=net.trainable_params(), learning_rate=cfg.lr)
iters_per_epoch = train_dataset.get_dataset_size()
total_train_steps = iters_per_epoch * cfg.epochs
print('iters_per_epoch: ', iters_per_epoch)
print('total_train_steps: ', total_train_steps)
metrics_name = ["acc", "iou", "dice", "sens", "spec"]
best_iou = 0
ckpt_path = 'checkpoint/best_UNet.ckpt'
for epoch in range(cfg.epochs):
print(f"Epoch [{epoch+1} / {cfg.epochs}]")
train(net, train_dataset, criterion, optimizer, metrics_name)
checkpoint_best, spec = val(net, val_dataset, criterion, metrics_name)
if epoch > 2 and spec > 0.2:
if checkpoint_best > best_iou:
print('IoU improved from %0.4f to %0.4f' % (best_iou, checkpoint_best))
best_iou = checkpoint_best
mindspore.save_checkpoint(net, ckpt_path)
print("saving best checkpoint at: {} ".format(ckpt_path))
else:
print('IoU did not improve from %0.4f' % (best_iou),"\n-------------------------------")
print("Done!")
2.6 模型预测
import os
import cv2
import mindspore.dataset as ds
import glob
import mindspore.dataset.vision as vision_C
import mindspore.dataset.transforms as C_transforms
import random
import mindspore
from mindspore.dataset.vision import Inter
import numpy as np
from tqdm import tqdm
# import skimage.io as io
def val_transforms(img_size):
return C_transforms.Compose([
vision_C.Resize(img_size, interpolation=Inter.NEAREST),
vision_C.Rescale(1/255., 0),
vision_C.HWC2CHW()
])
class Data_Loader:
def __init__(self, data_path, have_mask):
# 初始化函数,读取所有data_path下的图片
self.data_path = data_path
self.have_mask = have_mask
self.imgs_path = glob.glob(os.path.join(data_path, 'image/*.png'))
if self.have_mask:
self.label_path = glob.glob(os.path.join(data_path, 'mask/*.png'))
def __getitem__(self, index):
# 根据index读取图片
image = cv2.imread(self.imgs_path[index])
if self.have_mask:
label = cv2.imread(self.label_path[index], cv2.IMREAD_GRAYSCALE)
label = label.reshape((label.shape[0], label.shape[1], 1))
else:
label = image
return image, label
@property
def column_names(self):
column_names = ['image', 'label']
return column_names
def __len__(self):
return len(self.imgs_path)
def create_dataset(data_dir, img_size, batch_size, shuffle, have_mask = False):
mc_dataset = Data_Loader(data_path=data_dir, have_mask = have_mask)
print(len(mc_dataset))
dataset = ds.GeneratorDataset(mc_dataset, mc_dataset.column_names, shuffle=shuffle)
transform_img = val_transforms(img_size)
seed = random.randint(1, 1000)
mindspore.set_seed(seed)
dataset = dataset.map(input_columns='image', num_parallel_workers=1, operations=transform_img)
mindspore.set_seed(seed)
dataset = dataset.map(input_columns="label", num_parallel_workers=1, operations=transform_img)
dataset = dataset.batch(batch_size, num_parallel_workers=1)
return dataset
def model_pred(model, test_loader, result_path, have_mask):
model.set_train(False)
test_pred = []
test_label = []
for batch, (data, label) in enumerate(test_loader.create_tuple_iterator()):
pred = model(data)
pred[pred > 0.5] = float(1)
pred[pred <= 0.5] = float(0)
preds = np.squeeze(pred, axis=0)
img = np.transpose(preds,(1, 2, 0))
if not os.path.exists(result_path):
os.makedirs(result_path)
# io.imsave(os.path.join(result_path, "%05d.png" % batch), img.asnumpy())
cv2.imwrite(os.path.join(result_path, "%05d.png" % batch), img.asnumpy()*255.)
test_pred.extend(pred.asnumpy())
test_label.extend(label.asnumpy())
if have_mask:
mtr = ['acc', 'iou', 'dice', 'sens', 'spec']
metric = metrics_(mtr, smooth=1e-5)
metric.clear()
metric.update(test_pred, test_label)
res = metric.eval()
print(f'丨acc: %.3f丨丨iou: %.3f丨丨dice: %.3f丨丨sens: %.3f丨丨spec: %.3f丨' % (res[0], res[1], res[2], res[3], res[4]))
else:
print("Evaluation metrics cannot be calculated without Mask")
if __name__ == '__main__':
net = UNet(3, 1)
mindspore.load_checkpoint("checkpoint/best_UNet.ckpt", net=net)
result_path = "predict"
test_dataset = create_dataset("src/datasets/ISBI/test/", 224, 1, shuffle=False, have_mask=False)
model_pred(net, test_dataset, result_path, have_mask=False)
2.7 可视化预测结果
根据评价指标结构,本案例构建的网络模型具有较好的性能,能够实现对测试集进行较为准确的预测,针对测试集的部分预测结果如图所示。
注意,这里要修改对应的路径文章来源:https://uudwc.com/A/9dx0B
image_path = "src/datasets/ISBI/test/image/"
pred_path = "predict/"
image_list = os.listdir(image_path)
pred_list = os.listdir(pred_path)[1:]
# print(image_list)
# print(pred_list)
test_image = np.array([cv2.imread(image_path + image_list[p], -1) for p in range(len(image_list))])
pred_masks = np.array([cv2.imread(pred_path + pred_list[p], -1) for p in range(len(pred_list))])
show_image(test_image, num = 12)
show_image(pred_masks, num = 12)
文章来源地址https://uudwc.com/A/9dx0B