SpringBoot 利用 ThreadPoolTaskExecutor 批量插入数十万条数据

SpringBoot 利用 ThreadPoolTaskExecutor 批量插入万条数据

在批处理插入数据时,如果在单线程环境下是非常耗时的,本篇文章将采用单线程和多线程进行对比,利用 ThreadPoolTaskExecutor 进行多线程批处理插入65w数据,然后和单线程进行对比,最终得到性能优化。

image-20230112191339858

image-20230113135223468

yml 文件配置

# 异步线程池配置
thread:
  pool:
    corePoolSize: 8 # 核心线程数
    maxPoolSize: 20 # 设置最大线程数
    keepAliveSeconds: 300 # 设置线程活跃时间
    queueCapacity: 100 # 设置队列容量
    prefixName: async-service- # 线程名称前缀

spring 容器注入线程池 bean 对象

@Data
@ConfigurationProperties(prefix = "thread.pool")
public class ThreadPoolConfig {
    /**
     * 核心线程数
     */
    private Integer corePoolSize;

    /**
     * 设置最大线程数
     */
    private Integer maxPoolSize;

    /**
     * 设置线程活跃时间
     */
    private Integer keepAliveSeconds;

    /**
     * 设置队列容量
     */
    private Integer queueCapacity;

    /**
     * 线程名称前缀
     */
    private String prefixName;
}
@Configuration
@EnableAsync
@Slf4j
public class ThreadPoolExecutorConfig {
    private ThreadPoolConfig threadPoolConfig;

    public ThreadPoolExecutorConfig(ThreadPoolConfig threadPoolConfig) {
        this.threadPoolConfig = threadPoolConfig;
    }

    @Bean(name = "asyncServiceExecutor")
    public Executor asyncServiceExecutor() {
        log.info("start asyncServiceExecutor");
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(threadPoolConfig.getCorePoolSize());
        executor.setMaxPoolSize(threadPoolConfig.getMaxPoolSize());
        executor.setQueueCapacity(threadPoolConfig.getQueueCapacity());
        executor.setKeepAliveSeconds(threadPoolConfig.getKeepAliveSeconds());
        executor.setThreadNamePrefix(threadPoolConfig.getPrefixName());
        // 拒绝策略
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        // 初始化
        executor.initialize();
        return executor;
    }
}

创建异步线程业务类

@Service
@Slf4j
public class AsyncServiceImpl implements AsyncService {
    @Override
    @Async("asyncServiceExecutor")
    public void executeAsync(List<StandardStation> list, StandardStationService standardStationService, CountDownLatch countDownLatch) {
        try {
            log.info("start executeAsync");
            // 异步线程需要做的事情
            standardStationService.saveBatch(list);
            log.info("end executeAsync");
        } finally {
            // 无论上面程序是否异常必须执行 countDown,否则 await 无法释放
            countDownLatch.countDown();
        }
    }
}

创建单线程批量插入具体业务方法

/**
 * 单线程插入 650000 条数据
 */
@Test
public void testSingleThread() {
    // 10000 条数据
    List<StandardStation> standardStationList = list.stream().map(info -> {
        StandardStation standardStation = new StandardStation();
        BeanUtils.copyProperties(info, standardStation);
        return standardStation;
    }).collect(Collectors.toList());
    // 单线程 每 100 条数据插入一次
    List<List<StandardStation>> lists = Lists.partition(standardStationList, 100);
    long startTime = System.currentTimeMillis();
    lists.forEach(listSub -> standardStationService.saveBatch(listSub));
    long endTime = System.currentTimeMillis();
    log.info("共耗时:{} 秒", (endTime - startTime) / 1000);
}

结果:

image-20230113135734803

创建多线程批量插入具体业务方法

/**
 * 多线程插入 650000 条数据
 */
@Test
public void testMultiThread() {
    // 10000 条数据
    List<StandardStation> standardStationList = list.stream().map(info -> {
        StandardStation standardStation = new StandardStation();
        BeanUtils.copyProperties(info, standardStation);
        return standardStation;
    }).collect(Collectors.toList());
    // 每 100 条数据插入开一个线程
    List<List<StandardStation>> lists = Lists.partition(standardStationList, 100);
    CountDownLatch countDownLatch = new CountDownLatch(lists.size());
    long startTime = System.currentTimeMillis();
    lists.forEach(listSub -> asyncService.executeAsync(listSub, standardStationService, countDownLatch));
    try {
        // 保证之前的所有的线程都执行完成,才会走下面的
        countDownLatch.await();
    } catch (InterruptedException e) {
        log.error("阻塞异常:" + e.getMessage());
    }
    long endTime = System.currentTimeMillis();
    log.info("共耗时:{} 秒", (endTime - startTime) / 1000);
}

结果:

image-20230113135830051

从上述的结果可以看出,使用多线程后,批处理插入大量数据的耗时大大减少,由此可见多线程的好处。文章来源地址https://uudwc.com/A/Lmzzo

原文地址:https://blog.csdn.net/m0_52781902/article/details/128673369

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请联系站长进行投诉反馈,一经查实,立即删除!

h
上一篇 2023年08月03日 18:36
Python爬虫教程篇+图形化整理数据(数学建模可用)
下一篇 2023年08月03日 18:40