YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.73】添加渐近特征金字塔网络(AFPN模块)

 前言
作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他目标检测算法同样可以适用进行改进。希望能够对大家有帮助。

链接:https://pan.baidu.com/s/1fN07LssywnP_CFDZGPcK7A

提取码:关注后私信

一、解决问题

这篇文章提出的方法主要用并行子网络代替一层层叠加。这有助于有效减少深度同时保持高性能。尝试用提出的方法改进目标检测算法中,提升目标检测效果。

二、基本原理

原文链接:2306.15988.pdf (arxiv.org)

代码:https://github.com/gyyang23/AFPN

文章来源地址https://uudwc.com/A/V6gep

原文地址:https://blog.csdn.net/m0_70388905/article/details/131747982

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请联系站长进行投诉反馈,一经查实,立即删除!

h
上一篇 2023年09月25日 04:30
电脑计算机xinput1_3.dll丢失的解决方法分享,四种修复手段解决问题
下一篇 2023年09月25日 04:36