- Maximum Sum Circular Subarray
Medium
Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].
A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], …, nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.
Example 1:
Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
解法1:
不用滑动窗口和单调队列。实际上我们找连续子数组最大和 与 sum - 连续子数组最小和 之间的最大值就可以了。文章来源:https://uudwc.com/A/dbyWg
class Solution {
public:
int maxSubarraySumCircular(vector<int>& nums) {
int sum = 0, currMaxSum = 0, currMinSum = 0;
int gMaxSum = INT_MIN, gMinSum = INT_MAX;
for (auto num : nums) {
sum += num;
currMaxSum = max(currMaxSum + num, num);
gMaxSum = max(gMaxSum, currMaxSum);
currMinSum = min(currMinSum + num, num);
gMinSum = min(gMinSum, currMinSum);
}
//if all negative
if (gMinSum == sum) return gMaxSum;
return max(gMaxSum, sum - gMinSum);
}
};
解法2:单调队列+滑动窗口。但很不容易调通。
注意这里的滑动窗口的left就是dq.front,右窗口就是i。也就是说,滑动窗口的大小就相当于是i - dq.front。
什么时候调整左窗口? while (i - dq.front() > n) dq.pop_front();文章来源地址https://uudwc.com/A/dbyWg
class Solution {
public:
/**
* @param a: the array
* @return: Maximum Sum Circular Subarray
*/
int maxSubarraySumCircular(vector<int> &a) {
int n = a.size(), n2 = (n << 1);
int res = INT_MIN;
deque<int> dq; //monotonous queue
vector<int> nums2(n2, 0);
vector<int> presums(n2 + 1, 0);
for (int i = 0; i < n2; i++) {
nums2[i] = a[i % n];
}
for (int i = 1; i <= n2; i++) {
presums[i] = presums[i - 1] + nums2[i - 1];
}
for (int i = 1; i <= n2; i++) {
while (!dq.empty() && presums[dq.back()] > presums[i]) {
dq.pop_back();
}
dq.push_back(i);
while (i - dq.front() > n) dq.pop_front();
if (!dq.empty()) {
if (i == dq.front()) res = max(res, presums[i] - presums[i - 1]); //当输入全为负数时,处理不一样。
else res = max(res, presums[i] - presums[dq.front()]);
} else {
res = max(res, presums[i]);
}
}
return res;
}
};