【论文记录】Boosting Detection in Crowd Analysis via Underutilized Output Features

Boosting Detection in Crowd Analysis via Underutilized Output Features

Abstract

  Crowd Hat使用一种混合的2D-1D压缩技术进行细化空间特征与获取特定人群信息的空间和数量分布。进一步的,Crowd Hat采用自适应区域的NMS阈值与一个解耦然后对齐的范式来解决基于检测方法的缺陷。

Methodology

  作者认为检测得到预测的Bounding Boxes和Proposals包含丰富的特定人群信息。作者采用检测结果的区域尺寸和置信度分数。他认为这些特征对于人群分析是Pure。
image.png

Output Feature Compression

  直接把检测结果的中心坐标映射到输入图片上,得到的生成特征图存在着预测的Bounding Boxes和Proposals数量远小于图片中像素的数量,会导致特征图过于稀疏无法传递关键信息。
  作者提出了一种混合的2D-1D压缩方法进一步细化输出特征,获得这些特定人群信息的空间和数量分布。
image.png

2D Compression

  作者首先根据Proposal或者Bounding Box的中心坐标把他们映射到输入图片上,然后把图片分成S×S个Patches,将Patches的元素相加获得压缩矩阵M中的相应元素。
image.png
image.png

1D Compression

  1D压缩用来寻找输出特征的数值分布。例如一个低的输出Bounding box area sizes分布可能暗示一个很高的人群密度。
  首先,作者正则化置信度分数和区域尺寸值到[0,1]区间。然后将区间分成L个间隔。最后,计算落入每个区间值的数量。
image.png
image.png
image.png

Crowd Hat Network

  把2D压缩矩阵堆叠成t2d,把1D压缩矩阵堆叠成t1d
image.png

Region-Adaptive NMS Decoder

  将全局特征与局部特征进行连接,然后输入到MLP中,生成region-adaptive NMS阈值。
image.png

Decouple-then-Align Paradigm

  作者通过直接使用全局特征回归人群数量,对模型的检测过程与计数过程进行了解耦,使用一个独立的MLP作为Count Decoder PC去预测人群数量。
image.png
  将Bounding Boxes与Count中值小的且置信度高的作为最终结果。

Summary

  本文的主要思想是通过Proposals和Bounding Boxes获取特定人群的空间信息和数值信息,根据这些信息学习自适应的NMS阈值与人群数量。
image.png文章来源地址https://uudwc.com/A/gVyAO

原文地址:https://blog.csdn.net/qq_45722630/article/details/132890145

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请联系站长进行投诉反馈,一经查实,立即删除!

h
上一篇 2023年09月25日 09:37
VSCode 配置 Lua 开发环境(清晰明了)
下一篇 2023年09月25日 09:37