六、JVM-垃圾收集器浅析

垃圾收集器浅析 主

JVM参数

3.1.1 标准参数

-version
-help
-server
-cp

image.png

3.1.2 -X参数

非标准参数,也就是在JDK各个版本中可能会变动

-Xint     解释执行
-Xcomp    第一次使用就编译成本地代码
-Xmixed   混合模式,JVM自己来决定

image.png

3.1.3 -XX参数

使用得最多的参数类型

非标准化参数,相对不稳定,主要用于JVM调优和Debug

a.Boolean类型
格式:-XX:[+-]<name>            +或-表示启用或者禁用name属性
比如:-XX:+UseConcMarkSweepGC   表示启用CMS类型的垃圾回收器
	 -XX:+UseG1GC              表示启用G1类型的垃圾回收器
b.非Boolean类型
格式:-XX<name>=<value>表示name属性的值是value
比如:-XX:MaxGCPauseMillis=500

3.1.4 其他参数

-Xms1000M等价于-XX:InitialHeapSize=1000M
-Xmx1000M等价于-XX:MaxHeapSize=1000M
-Xss100等价于-XX:ThreadStackSize=100

所以这块也相当于是-XX类型的参数

3.1.5 查看参数

java -XX:+PrintFlagsFinal -version > flags.txt

]image.pngimage.png

值得注意的是"=“表示默认值,”:="表示被用户或JVM修改后的值
要想查看某个进程具体参数的值,可以使用jinfo,这块后面聊
一般要设置参数,可以先查看一下当前参数是什么,然后进行修改

3.1.6 设置参数的常见方式

  • 开发工具中设置比如IDEA,eclipse
  • 运行jar包的时候:java -XX:+UseG1GC xxx.jar
  • web容器比如tomcat,可以在脚本中的进行设置
  • 通过jinfo实时调整某个java进程的参数(参数只有被标记为manageable的flags可以被实时修改)

3.1.7 实践和单位换算

1Byte(字节)=8bit(位)
1KB=1024Byte(字节)
1MB=1024KB
1GB=1024MB
1TB=1024GB
(1)设置堆内存大小和参数打印
-Xmx100M -Xms100M -XX:+PrintFlagsFinal
(2)查询+PrintFlagsFinal的值
:=true
(3)查询堆内存大小MaxHeapSize
:= 104857600
(4)换算
104857600(Byte)/1024=102400(KB)
102400(KB)/1024=100(MB)
(5)结论
104857600是字节单位

3.1.8 常用参数含义

参数 含义 说明
-XX:CICompilerCount=3 最大并行编译数 如果设置大于1,虽然编译速度会提高,但是同样影响系统稳定性,会增加JVM崩溃的可能
-XX:InitialHeapSize=100M 初始化堆大小 简写-Xms100M
-XX:MaxHeapSize=100M 最大堆大小 简写-Xms100M
-XX:NewSize=20M 设置年轻代的大小
-XX:MaxNewSize=50M 年轻代最大大小
-XX:OldSize=50M 设置老年代大小
-XX:MetaspaceSize=50M 设置方法区大小
-XX:MaxMetaspaceSize=50M 方法区最大大小
-XX:+UseParallelGC 使用UseParallelGC 新生代,吞吐量优先
-XX:+UseParallelOldGC 使用UseParallelOldGC 老年代,吞吐量优先
-XX:+UseConcMarkSweepGC 使用CMS 老年代,停顿时间优先
-XX:+UseG1GC 使用G1GC 新生代,老年代,停顿时间优先
-XX:NewRatio 新老生代的比值 比如-XX:Ratio=4,则表示新生代:老年代=1:4,也就是新生代占整个堆内存的1/5
-XX:SurvivorRatio 两个S区和Eden区的比值 比如-XX:SurvivorRatio=8,也就是(S0+S1):Eden=2:8,也就是一个S占整个新生代的1/10
-XX:+HeapDumpOnOutOfMemoryError 启动堆内存溢出打印 当JVM堆内存发生溢出时,也就是OOM,自动生成dump文件
-XX:HeapDumpPath=heap.hprof 指定堆内存溢出打印目录 表示在当前目录生成一个heap.hprof文件
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Xloggc:g1-gc.log 打印出GC日志 可以使用不同的垃圾收集器,对比查看GC情况
-Xss128k 设置每个线程的堆栈大小 经验值是3000-5000最佳
-XX:MaxTenuringThreshold=6 提升年老代的最大临界值 默认值为 15
-XX:InitiatingHeapOccupancyPercent 启动并发GC周期时堆内存使用占比 G1之类的垃圾收集器用它来触发并发GC周期,基于整个堆的使用率,而不只是某一代内存的使用比. 值为 0 则表示”一直执行GC循环”. 默认值为 45.
-XX:G1HeapWastePercent 允许的浪费堆空间的占比 默认是10%,如果并发标记可回收的空间小于10%,则不会触发MixedGC。
-XX:MaxGCPauseMillis=200ms G1最大停顿时间 暂停时间不能太小,太小的话就会导致出现G1跟不上垃圾产生的速度。最终退化成Full GC。所以对这个参数的调优是一个持续的过程,逐步调整到最佳状态。
-XX:ConcGCThreads=n 并发垃圾收集器使用的线程数量 默认值随JVM运行的平台不同而不同
-XX:G1MixedGCLiveThresholdPercent=65 混合垃圾回收周期中要包括的旧区域设置占用率阈值 默认占用率为 65%
-XX:G1MixedGCCountTarget=8 设置标记周期完成后,对存活数据上限为 G1MixedGCLIveThresholdPercent 的旧区域执行混合垃圾回收的目标次数 默认8次混合垃圾回收,混合回收的目标是要控制在此目标次数以内
-XX:G1OldCSetRegionThresholdPercent=1 描述Mixed GC时,Old Region被加入到CSet中 默认情况下,G1只把10%的Old Region加入到CSet中

垃圾收集器

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。

image.png

2.5.5.1 Serial

Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK1.3.1之前)是虚拟机新生代收集的唯一选择。

它是一种单线程收集器,不仅仅意味着它只会使用一个CPU或者一条收集线程去完成垃圾收集工作,更重要的是其在进行垃圾收集的时候需要暂停其他线程。

优点:简单高效,拥有很高的单线程收集效率
缺点:收集过程需要暂停所有线程
算法:复制算法
适用范围:新生代
应用:Client模式下的默认新生代收集器

image.png

2.5.5.2 Serial Old

Serial Old收集器是Serial收集器的老年代版本,也是一个单线程收集器,不同的是采用"标记-整理算法",运行过程和Serial收集器一样。

image.png

2.5.5.3 ParNew

可以把这个收集器理解为Serial收集器的多线程版本。

优点:在多CPU时,比Serial效率高。
缺点:收集过程暂停所有应用程序线程,单CPU时比Serial效率差。
算法:复制算法
适用范围:新生代
应用:运行在Server模式下的虚拟机中首选的新生代收集器

image.png

2.5.5.4 Parallel Scavenge

Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器,看上去和ParNew一样,但是Parallel Scanvenge更关注系统的吞吐量

吞吐量=运行用户代码的时间/(运行用户代码的时间+垃圾收集时间)

比如虚拟机总共运行了100分钟,垃圾收集时间用了1分钟,吞吐量=(100-1)/100=99%。

若吞吐量越大,意味着垃圾收集的时间越短,则用户代码可以充分利用CPU资源,尽快完成程序的运算任务。

-XX:MaxGCPauseMillis控制最大的垃圾收集停顿时间,
-XX:GCRatio直接设置吞吐量的大小。

2.5.5.5 Parallel Old

Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和标记-整理算法进行垃圾回收,也是更加关注系统的吞吐量

2.5.4.6 CMS

官网: https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html#concurrent_mark_sweep_cms_collector

CMS(Concurrent Mark Sweep)收集器是一种以获取 最短回收停顿时间为目标的收集器。

采用的是"标记-清除算法",整个过程分为4步

(1)初始标记 CMS initial mark     标记GC Roots直接关联对象,不用Tracing,速度很快
(2)并发标记 CMS concurrent mark  进行GC Roots Tracing
(3)重新标记 CMS remark           修改并发标记因用户程序变动的内容
(4)并发清除 CMS concurrent sweep 清除不可达对象回收空间,同时有新垃圾产生,留着下次清理称为浮动垃圾

由于整个过程中,并发标记和并发清除,收集器线程可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行的。

image.png

优点:并发收集、低停顿
缺点:产生大量空间碎片、并发阶段会降低吞吐量

2.5.5.7 G1(Garbage-First)

官网: https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc.html#garbage_first_garbage_collection

使用G1收集器时,Java堆的内存布局与就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。

每个Region大小都是一样的,可以是1M到32M之间的数值,但是必须保证是2的n次幂

如果对象太大,一个Region放不下[超过Region大小的50%],那么就会直接放到H中

设置Region大小:-XX:G1HeapRegionSize=M

所谓Garbage-Frist,其实就是优先回收垃圾最多的Region区域

(1)分代收集(仍然保留了分代的概念)
(2)空间整合(整体上属于“标记-整理”算法,不会导致空间碎片)
(3)可预测的停顿(比CMS更先进的地方在于能让使用者明确指定一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒)

工作过程可以分为如下几步

初始标记(Initial Marking)      标记以下GC Roots能够关联的对象,并且修改TAMS的值,需要暂停用户线程
并发标记(Concurrent Marking)   从GC Roots进行可达性分析,找出存活的对象,与用户线程并发执行
最终标记(Final Marking)        修正在并发标记阶段因为用户程序的并发执行导致变动的数据,需暂停用户线程
筛选回收(Live Data Counting and Evacuation) 对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间制定回收计划

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-d0TpyGXY-1690955841044)(images/36.png)]image.png

2.5.5.8 ZGC

官网: https://docs.oracle.com/en/java/javase/11/gctuning/z-garbage-collector1.html#GUID-A5A42691-095E-47BA-B6DC-FB4E5FAA43D0

JDK11新引入的ZGC收集器,不管是物理上还是逻辑上,ZGC中已经不存在新老年代的概念了

会分为一个个page,当进行GC操作时会对page进行压缩,因此没有碎片问题

只能在64位的linux上使用,目前用得还比较少

(1)可以达到10ms以内的停顿时间要求

(2)支持TB级别的内存

(3)堆内存变大后停顿时间还是在10ms以内
image.png

2.5.5.9 垃圾收集器分类

  • 串行收集器->Serial和Serial Old

只能有一个垃圾回收线程执行,用户线程暂停。

适用于内存比较小的嵌入式设备

  • 并行收集器[吞吐量优先]->Parallel Scanvenge、Parallel Old

多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。

适用于科学计算、后台处理等若交互场景

  • 并发收集器[停顿时间优先]->CMS、G1

用户线程和垃圾收集线程同时执行(但并不一定是并行的,可能是交替执行的),垃圾收集线程在执行的时候不会停顿用户线程的运行。

适用于相对时间有要求的场景,比如Web

2.5.5.10 常见问题

  • 吞吐量和停顿时间

    • 停顿时间->垃圾收集器 进行 垃圾回收终端应用执行响应的时间
    • 吞吐量->运行用户代码时间/(运行用户代码时间+垃圾收集时间)
    停顿时间越短就越适合需要和用户交互的程序,良好的响应速度能提升用户体验;
    高吞吐量则可以高效地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
    

    小结:这两个指标也是评价垃圾回收器好处的标准。

  • 如何选择合适的垃圾收集器

    https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html#sthref28

    • 优先调整堆的大小让服务器自己来选择
    • 如果内存小于100M,使用串行收集器
    • 如果是单核,并且没有停顿时间要求,使用串行或JVM自己选
    • 如果允许停顿时间超过1秒,选择并行或JVM自己选
    • 如果响应时间最重要,并且不能超过1秒,使用并发收集器
  • 对于G1收集

JDK 7开始使用,JDK 8非常成熟,JDK 9默认的垃圾收集器,适用于新老生代。

是否使用G1收集器?

(1)50%以上的堆被存活对象占用
(2)对象分配和晋升的速度变化非常大
(3)垃圾回收时间比较长
  • G1中的RSet

全称Remembered Set,记录维护Region中对象的引用关系

试想,在G1垃圾收集器进行新生代的垃圾收集时,也就是Minor GC,假如该对象被老年代的Region中所引用,这时候新生代的该对象就不能被回收,怎么记录呢?
不妨这样,用一个类似于hash的结构,key记录region的地址,value表示引用该对象的集合,这样就能知道该对象被哪些老年代的对象所引用,从而不能回收。
  • 如何开启需要的垃圾收集器

这里JVM参数信息的设置大家先不用关心,后面会学习到。

(1)串行
	-XX:+UseSerialGC 
	-XX:+UseSerialOldGC
(2)并行(吞吐量优先):
    -XX:+UseParallelGC
    -XX:+UseParallelOldGC
(3)并发收集器(响应时间优先)
	-XX:+UseConcMarkSweepGC
	-XX:+UseG1GC

image.png

并发 垃圾收集线程 与业务线程一起执行的过程 叫并发 但是这个时候 硬件是单核的 并发不并行

并行 多个垃圾收集线程进行执行 STW

吞吐量 停顿时间 垃圾收集器的好坏的

如果停顿时间在可控制范围之内,那么优先考虑吞吐量 如果吞吐量在极限情况下,优先考虑停顿时间

0-0.5S 之上 设置一个0.5S左右的极限吞吐

优先设置最大吞吐 95% 尽可能降低停顿时间 1%的吞吐可以换来30% 98% 1S 97% 0.7S

怎么并发的 是不是完全并发 不能完全并发 减小停顿时间 并不是让停顿时间消失

垃圾收集线程 与业务线程 如何一起运行

该回收的没回收 不该回收的被回收了 产生垃圾 标记清除算法

我需要把耗时的步骤 全部并发 并且 把不耗时的步骤 STW

如果我们希望垃圾收集时间变短 我们应该怎么办 ?

标记 找出所有的GC root 并且找出所有引用链上的存活对象 并且标记

清除

初始标记:找出所有的GC root,标记直接相关联的第一个对象 STW

并发标记:找出所有的引用链上的剩余对象 耗时 并发执行

重新标记:就是将第二步所产生的垃圾进行二次标记 不耗时 STW

并发清理:清理所有垃圾 耗时 并发执行

G1

1.可以让你停顿时间变短 想多短就多短

1个小时 浏览器

2.某种程度上可以解决空间碎片的问题

Azure C4文章来源地址https://uudwc.com/A/xkb3b

原文地址:https://blog.csdn.net/starlight_520/article/details/132060695

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请联系站长进行投诉反馈,一经查实,立即删除!

h
上一篇 2023年08月03日 18:56
FastAPI(七)应用配置
下一篇 2023年08月03日 19:00